POEx: A Beyond-Birthday-Bound-Secure On-Line Cipher

ArcticCrypt 2016

Christian Forler ${ }^{1}$ Eik List ${ }^{2}$ Stefan Lucks ${ }^{2}$ Jakob Wenzel ${ }^{2}$
${ }^{1}$ Hochschule Schmalkalden, ${ }^{2}$ Bauhaus-Universität Weimar eik.list (at) uni-weimar.de

18 July 2016

Agenda

1 Motivation

2 POEx

3 Proof Ideas

4 Instantiation

5 Summary

Section 1

Motivation

On-Line Ciphers

[Bellare et al., 2001]

■ On-line cipher:
■ Every C_{i} depends only on M_{1}, \ldots, M_{i}
■ [Boldyreva and Taesombut, 2004]: Constant latency and memory

On-Line Ciphers

[Bellare et al., 2001]

■ On-line cipher:
■ Every C_{i} depends only on M_{1}, \ldots, M_{i}
■ [Boldyreva and Taesombut, 2004]: Constant latency and memory
■ Length-preserving

On-Line Ciphers

[Bellare et al., 2001]

■ On-line cipher:
■ Every C_{i} depends only on M_{1}, \ldots, M_{i}
■ [Boldyreva and Taesombut, 2004]: Constant latency and memory
■ Length-preserving

- Prefix-preserving

■ $p \leftarrow \operatorname{LLCP}_{n}\left(M, M^{\prime}\right)$: Length (in blocks) of longest common prefix
■ $C_{i}=C_{i}^{\prime}$, for all $1 \leq i \leq p$

- $C_{p+1} \neq C_{p+1}^{\prime}$

■ C_{i}, C_{i}^{\prime} independent for all $i>p+1$

Notions: SOPRP-Security

[Bellare et al., 2001]

- $P \leftrightarrow$ OPerm $_{n}$
- $K \leftrightarrow \mathcal{K}$

Limitation: Birthday Bound

HCBC1

TC3

HPCBC

MHCBC

MHCBC
■ (S)OPRP security requires dependency of previous block \Longrightarrow chaining

- All of the above: n-bit chaining value (bottleneck: collision)
- Birthday bound: security lost after $2^{n / 2}$ blocks encrypted under the same key
- Interesting problem in practice and theory

Application: On-Line Authenticated Encryption Schemes

Relevance:

■ High-throughput/low-latency requirements,
e. g. Optical Transport Networks [ITU-T, 2009]

■ Stream-oriented interfaces in implementations, e. g. EVP_DecryptUpdate in OpenSSL [Young and Hudson, 2011]
■ Output (part of) the result before all input parts are fully processed

Application: On-Line Authenticated Encryption Schemes

Relevance:

■ High-throughput/low-latency requirements,
e. g. Optical Transport Networks [ITU-T, 2009]

- Stream-oriented interfaces in implementations, e. g. EVP_DecryptUpdate in OpenSSL [Young and Hudson, 2011]
■ Output (part of) the result before all input parts are fully processed
2nd-Round BC-Based Robust On-Line CAESAR Candidates:
■ AES-JAMBU, COLM (AES-COPA + ELmD), POET, SHELL

Application: On-Line Authenticated Encryption Schemes

Relevance:
■ High-throughput/low-latency requirements,
e. g. Optical Transport Networks [ITU-T, 2009]

- Stream-oriented interfaces in implementations, e. g. EVP_DecryptUpdate in OpenSSL [Young and Hudson, 2011]
■ Output (part of) the result before all input parts are fully processed
2nd-Round BC-Based Robust On-Line CAESAR Candidates:
- AES-JAMBU, COLM (AES-COPA + ELmD), POET, SHELL

Inherit birthday-bound limitation

Approaches for Higher (Provable) Security

1 Instantiation with wide-block primitive
2 Sponges
3 BBB-secure design

Alternative Approaches

1. Instantiation with Wide-Block Primitive

- Example: TC3 [Rogaway and Zhang, 2011] with Prøst permutation or BLAKE2B, keyed and tweaked using Even-Mansour [Even and Mansour, 1991]
+ Efficient
+ Simple description and analysis
- Technically not beyond-birthday-bound (BBB) (our approach guarantees significantly higher security)

Alternative Approaches

2. Sponge

- E.g. Keyak, Ketje, NORX, PRIMATEs, StriBOB, ...
+ High security margin
- Not fully as efficient as block-cipher-based on-line ciphers
- Technically not BBB

Section 2

POEx

POE

■ On-line cipher under POET [Abed et al., 2014]

- 1 BC call +2 calls to ϵ-AXU hash function H per block
- SOPRP-secure
- POE + PMAC + Tag Splitting:

Decryption-misuse-resistant on-line AE scheme POET

XTX

- [Minematsu and Iwata, 2015]
- Tweak-domain extender for tweakable block cipher $\widetilde{E}: \mathcal{K} \times\{0,1\}^{\tau} \times\{0,1\}^{n} \rightarrow\{0,1\}^{n}$
- ϵ-AXU hash function
$H: \mathcal{L} \times\{0,1\}^{*} \rightarrow\{0,1\}^{\tau} \times\{0,1\}^{n}$
$\operatorname{Adv}_{\mathrm{XTX}[\widetilde{E}, H], \mathrm{XTX}\left[\widetilde{E}^{-1}, H\right]^{-1}}^{\mathrm{STPRP}}(\mathbf{A}) \leq \epsilon \cdot q^{2}+\operatorname{Adv}_{\widetilde{E}, \widetilde{E}^{-1}}^{\mathrm{STPRP}}(\ell, O(t))$.

POEx

■ XTX chained
■ $H: \epsilon$-AXU hash function

- \widetilde{E} : tweakable block cipher
- SOPRP-secure on-line secure up to about $O\left(2^{n+\tau / 2}\right)$ blocks encrypted under same key
- BBB-secure

Section 3

Proof Ideas

Proof Ideas

Steps

Steps:

1 Replace \widetilde{E} by ideal primitive $\widetilde{\pi} \pi \operatorname{TPerm}(\tau, n)$

Proof Ideas

Steps

Steps:

1 Replace \widetilde{E} by ideal primitive $\widetilde{\pi} \longleftarrow \operatorname{TPerm}(\tau, n)$
2 Identify bad events

Proof Ideas

Steps

Steps:

1 Replace \widetilde{E} by ideal primitive $\widetilde{\pi} \longleftarrow \operatorname{TPerm}(\tau, n)$
2 Identify bad events
3 Study difference between $\mathrm{POEx} / \mathrm{POEx}^{-1}$ and P / P^{-1}
w/o bad events: In, directly after, and beyond common prefix

Proof Ideas

Steps

Steps:

1 Replace \widetilde{E} by ideal primitive $\widetilde{\pi} \longleftarrow \operatorname{TPerm}(\tau, n)$
2 Identify bad events
3 Study difference between POEx/ POEx^{-1} and P / P^{-1}
w/o bad events: In, directly after, and beyond common prefix
4 Bound probability of bad events

Proof Ideas

Bad Events

Bad Events:

- Consider distinct queries: $(M, C) \neq\left(M^{\prime}, C^{\prime}\right), p=\operatorname{LLCP}_{n}\left(M, M^{\prime}\right)$

■ Enc. queries: tweak+input collision: $\left(V_{i}, X_{i}\right)=\left(V_{j}^{\prime}, X_{j}^{\prime}\right)$

- Enc. queries: chaining-value collision: $\left(X_{i}, Y_{i}\right)=\left(X_{j}^{\prime}, Y_{j}^{\prime}\right)$
- Collisions beyond longest common prefix
- Two similar bad events for decryption queries

Proof Ideas

Bound

■ Assuming independent keys K and L

- ϵ-AXU hash function H
$\operatorname{Adv}_{\operatorname{POEx}[\widetilde{E}, H], \operatorname{POEx}\left[\widetilde{\left.E^{-1}, H\right]-1}\right.}^{\mathrm{SOPRP}}(\mathbf{A}) \leq 2 \ell^{2} \epsilon \cdot\left(2+\frac{2^{\tau}}{2^{n}-\ell}\right)+2 \cdot \mathbf{A d v}_{\widetilde{E}, \widetilde{E}-1}^{\mathrm{STPRP}}(\ell, O(t))$.

Section 4

Instantiation

Instantiation of \widetilde{E}

■ TWEAKEY constructions [Jean et al., 2014]

- Deoxys-BC-128-128 as \widetilde{E}
- AES-based, software-efficient
- 128-bit tweak and state

Instantiation of \widetilde{E}

■ TWEAKEY constructions [Jean et al., 2014]

- Deoxys-BC-128-128 as \widetilde{E}

■ AES-based, software-efficient
■ 128-bit tweak and state
■ Various application-specific alternatives possible:
■ Joltik-BC, Mennink's designs [Mennink, 2015], ThreeFish [Ferguson et al., 2010], ...

Instantiation of H

- GF multiplications for H :

$$
\operatorname{PoLY}[n]_{L}(M):=\sum_{i=1}^{m} L^{m+1-i} \cdot M_{i} \bmod p_{n}(x),
$$

- $m / 2^{n}$ - AXU for $\mathbb{G F}\left(2^{n}\right), p_{n}(x)$: irreducible polynomial in $\mathbb{G F}\left(2^{n}\right)$
- For $\mathcal{L}=\mathbb{G F}\left(2^{n}\right) \times \mathbb{G F}\left(2^{\tau}\right)$:

$$
\operatorname{PoLy}[n, \tau]_{L_{1}, L_{2}}(M):=\left(\operatorname{PoLY}[n]_{L_{1}}(M), \operatorname{PoLY}[\tau]_{L_{2}}(M)\right) .
$$

Instantiation of H

■ $\operatorname{PoLy}[n, \tau]$ is $4 / 2^{n+\tau}$-AXU for 2 -block inputs
■ 4 GF multiplications, parallelizable
\square For $\mathcal{L}=\mathbb{G} \mathbb{F}\left(2^{n}\right) \times \mathbb{G} \mathbb{F}\left(2^{\tau}\right)$ and $\left(L_{1}, L_{2}\right) \in \mathcal{L}$:

$$
\begin{aligned}
W_{i} & \leftarrow\left(L_{1}^{2} \cdot X_{i-1}\right)+\left(L_{1} \cdot Y_{i-1}\right) \bmod p_{n}(x) \\
V_{i} & \leftarrow\left(L_{2}^{2} \cdot X_{i-1}\right)+\left(L_{2} \cdot Y_{i-1}\right) \bmod p_{\tau}(x)
\end{aligned}
$$

where multiplications and additions are defined over \mathcal{L}

Instantiation

- $\Pi:=\operatorname{POEx}[\widetilde{E}, \operatorname{Poly}[n, \tau]]$.

■ ℓ : \#Blocks over all queries

- Assuming $\ell \leq 2^{n-1}$:

$$
\operatorname{Adv}_{\Pi, \Pi^{-1}}^{\operatorname{SOPRP}}(\mathbf{A}) \leq 16 \ell^{2} \cdot\left(\frac{1}{2^{n+\tau}}+\frac{1}{2^{2 n}}\right)+2 \cdot \mathbf{A d v}_{\widetilde{E}, \mathbb{E}^{-1}}^{\operatorname{STPRP}}(\ell, O(t)) .
$$

Section 5

Summary

Comparison

Aspect		On－line ciphers										OAE schemes			
	$\begin{aligned} & \text { 㐅 } \\ & \text { O } \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{U} \\ & 0 \\ & \underset{u}{u} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ô } \\ & \text { Un } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \text { 者 } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & y \end{aligned}$	$\begin{aligned} & \text { U } \\ & 0 \\ & 0 \\ & \text { B } \end{aligned}$	$\begin{aligned} & \text { In } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathrm{U} \\ & H \end{aligned}$	ざ	O	S	$\begin{aligned} & \text { U } \\ & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { X } \\ & 1 \\ & \text { 1 } \\ & 0 \\ & 0 \end{aligned}$	留
\＃（T）BC calls	m	$2 m$	m	m	$m+1$	m	m	m	m	m	m	$2 m$	m	m	$2 m$
\＃HF calls	$2 m$	－	m	$2 m$	$2 m+1$	m	$2 m$	$2 m$	－	－	－	－	m	－	－
\＃Keys	2	1	2	2	2	1	2	2	1	1	1	1	2	1	1
HF Key Length	$n+\tau$	－	n	$2 n$	$2 n$	－	n	n	－	－	－	－	n	－	－
SOPRP－secure	－	－	－	－	－	\bullet	\bullet	\bullet	－	\bullet	\bullet	－	－	－	\bullet
BBB	\bullet	－	－	－	－	－	－	－	－	－	－	－	－	－	－

Summary

Features:

- Based on tweakable block cipher + universal hash function
- BBB

■ Provably secure if TBC secure

Summary

Features:

■ Based on tweakable block cipher + universal hash function

- BBB

■ Provably secure if TBC secure

Current Limitations:

■ Requires tweakable block cipher + universal hash function
■ Pipelinable $=$ sequential calls to TBC
■ 2 keys, $2 n$-bit hash key

Summary

Features:

■ Based on tweakable block cipher + universal hash function

- BBB

■ Provably secure if TBC secure

Current Limitations:

■ Requires tweakable block cipher + universal hash function
■ Pipelinable $=$ sequential calls to TBC
■ 2 keys, $2 n$-bit hash key

Future Work:

■ Extend to a BBB-secure on-line AE scheme

Questions?
Lunch?

Section 6

Supporting Slides

Bibliography

Abed, F., Forler, C., McGrew, D., List, E., Fluhrer, S., Lucks, S., and Wenzel, J. (2014).

Pipelineable On-line Encryption.
In Cid, C. and Rechberger, C., editors, FSE, volume 8540 of Lecture Notes in Computer Science, pages 205-223. Springer.

Bellare, M., Boldyreva, A., Knudsen, L. R., and Namprempre, C. (2001).
Online Ciphers and the Hash-CBC Construction.
In Kilian, J., editor, CRYPTO, volume 2139 of Lecture Notes in Computer Science, pages 292-309. Springer.

Boldyreva, A. and Taesombut, N. (2004).
Online Encryption Schemes: New Security Notions and Constructions.
In Okamoto, T., editor, CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 1-14. Springer.

Even, S. and Mansour, Y. (1991).
A Construction of a Cipher From a Single Pseudorandom Permutation.
In ASIACRYPT, pages 210-224.
Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., and Walker, J. (2010).
The Skein Hash Function Family.

AXU/Partial-AXU

[Minematsu and Iwata, 2015]

$$
\epsilon-\mathrm{AXU}: \max _{\substack{X \neq X^{\prime} \\ \Delta_{1} \in\{0,1\}^{\tau+n}}} \operatorname{Pr}_{L}\left[(V \| W) \oplus\left(V^{\prime} \| W^{\prime}\right)=\Delta_{1}\right] \leq \epsilon
$$

$$
(n, \tau, \epsilon)-\mathrm{pAXU}: \max _{\substack{x \neq X^{\prime} \\ \Delta_{2} \in\{0,1\}^{n}}} \operatorname{Pr}_{L}\left[(V \| W) \oplus\left(V^{\prime} \| W^{\prime}\right)=\left(0^{\tau} \| \Delta_{2}\right)\right] \leq \epsilon
$$

An ϵ-AXU hash function of $(n+\tau)$-bit outputs is also (n, τ, ϵ)-pAXU [Minematsu and Iwata, 2015]

Proof Ideas

1.) Replace $\widetilde{E} / \widetilde{E}^{-1}$ with Random Tweaked Permutation:

■ $\widetilde{\pi} \nleftarrow \operatorname{TPerm}(\tau, n)$

- Implementable by lazy sampling
- Difference over ℓ blocks

$$
\operatorname{Adv}_{\widetilde{E}, \mathbb{E}_{-1}}^{\mathrm{STPRP}}(\ell, O(t))
$$

Proof Ideas

3.) Behavior without Bad Events

3.1) In Common Prefix:

■ Same $\left(M_{i}, X_{i-1}, Y_{i-1}\right) \Longrightarrow$ same C_{i}

Proof Ideas

3.) Behavior without Bad Events

3.1) In Common Prefix:

■ Same $\left(M_{i}, X_{i-1}, Y_{i-1}\right) \Longrightarrow$ same C_{i}
■ Indistinguishable from P

Proof Ideas

Behavior without Bad Events

3.2) Directly after Common Prefix:

■ $\left(X_{i-1}, Y_{i-1}\right)=\left(X_{i-1}^{\prime}, Y_{i-1}^{\prime}\right) \Longrightarrow$ $\left(V_{i-1}, W_{i-1}\right)=\left(V_{i-1}^{\prime}, W_{i-1}^{\prime}\right)$
■ $W_{i}=W_{i}^{\prime}$ and $M_{i} \neq M_{i}^{\prime} \Longrightarrow X_{i} \neq X_{i}^{\prime}$

- $V_{i}=V_{i}^{\prime}$ and $X_{i} \neq X_{i}^{\prime} \Longrightarrow Y_{i} \neq Y_{i}^{\prime}$
- $W_{i}=W_{i}^{\prime}$ and $Y_{i} \neq Y_{i}^{\prime} \Longrightarrow C_{i} \neq C_{i}^{\prime}$

■ Indistinguishable from P

Proof Ideas

Behavior without Bad Events

3.3) Beyond Common Prefix:

■ Assuming no bad events: $\left(X_{i-1}, Y_{i-1}, M_{i}\right) \neq\left(X_{j-1}^{\prime}, Y_{j-1}^{\prime}, M_{i}^{\prime}\right)$

- Bounded by max. advantage to distinguish XTX[$\widetilde{\pi}, H]$ from random permutation [Minematsu and Iwata, 2015]

$$
\operatorname{Adv}_{\mathrm{XTX}[\pi, H], \operatorname{XTX}\left[\widetilde{\pi}^{-1}, H\right]-1}^{\operatorname{STPRP}}(\ell, O(t)) \leq \epsilon \cdot \ell^{2}
$$

Proof Ideas

4.) Probability of Bad Events

$$
\operatorname{bad}_{1}:=\left(V_{i}=V_{j}^{\prime}\right) \wedge\left(X_{i}=X_{j}^{\prime}\right)
$$

■ Definition of pAXU

- H is ϵ - $\mathrm{AXU} \Longrightarrow H$ is ϵ-pAXU

■ Over at most ℓ blocks of all queries:

$$
\operatorname{Pr}\left[\mathrm{bad}_{1}\right] \leq \epsilon \cdot \ell^{2} / 2
$$

Similar argument in decryption direction:
$\operatorname{bad}_{3}:=\left(V_{i}=V_{j}^{\prime}\right) \wedge\left(Y_{i}=Y_{j}^{\prime}\right)$

$$
\operatorname{Pr}\left[\operatorname{bad}_{3}\right] \leq \operatorname{bad}_{1}
$$

Proof Ideas

4.) Probability of Bad Events

Proof Ideas

4.) Probability of Bad Events

$\operatorname{Pr}\left[\left(X_{i}=X_{j}^{\prime}\right) \wedge\left(Y_{i}=Y_{j}^{\prime}\right) \wedge\left(V_{i} \neq V_{j}^{\prime}\right)\right]$

- H is ϵ-pAXU:

$$
\begin{aligned}
\operatorname{Pr}\left[X_{i}=X_{j}^{\prime}\right] & =\operatorname{Pr}\left[W_{i} \oplus W_{j}^{\prime}=M_{i} \oplus M_{j}^{\prime}\right] \\
& \leq 2^{\tau} \cdot \epsilon
\end{aligned}
$$

since we consider all $2^{\tau}-1$ possible $V_{i} \neq V_{j}^{\prime}$

Proof Ideas

4.) Probability of Bad Events

■ Independent $\widetilde{\pi}^{V_{i}}, \widetilde{\pi}^{V_{j}^{\prime}}$:

$$
\operatorname{Pr}\left[Y_{i}=Y_{j}^{\prime} \mid X_{i}=X_{j}^{\prime} \wedge V_{i} \neq V_{j}^{\prime}\right] \leq \frac{1}{2^{n}-\ell}
$$

- Over ℓ blocks of all queries:

$$
\begin{aligned}
& \operatorname{Pr}\left[Y_{i}=Y_{j}^{\prime} \mid X_{i}=X_{j}^{\prime} \wedge V_{i} \neq V_{j}^{\prime}\right] \\
& \cdot \operatorname{Pr}\left[X_{i}=X_{j}^{\prime} \wedge V_{i} \neq V_{j}^{\prime}\right] \\
\leq & \frac{\ell^{2}}{2} \cdot 2^{\tau} \cdot \epsilon \cdot \frac{1}{2^{n}-\ell}
\end{aligned}
$$

■ Similar argument in decryption direction

