Symmetric Encryption via Keyrings and ECC

Ronald L. Rivest

Institute Professor MIT, Cambridge, MA

ArcticCrypt 2016-07-18

Outline

Motivation—Simplifying Crypto Key Updates

Keyring (Bag of Words) Model Incremental Key Updates Keyring Issues

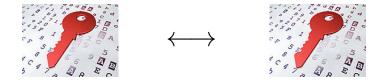
Resilience

Prior Work—Biometrics, Fuzziness, Quantum Resilient Set Vectorization Security Analysis

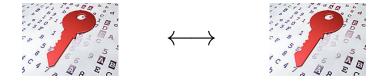
Encrypting with keyrings

Error-correction
Keyring encryption details
Attacks

Discussion

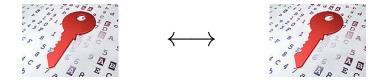


Updating symmetric crypto keys is hard, because they:



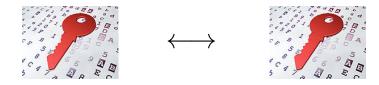
Updating symmetric crypto keys is hard, because they:

have high entropy



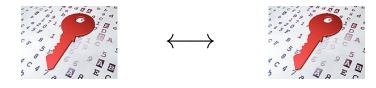
Updating symmetric crypto keys is hard, because they:

- have high entropy
- are not memorable, and



Updating symmetric crypto keys is hard, because they:

- have high entropy
- are not memorable, and
- are updated "all-at-once" instead of incrementally.



Updating symmetric crypto keys is hard, because they:

- have high entropy
- are not memorable, and
- are updated "all-at-once" instead of incrementally.

Are there better (non-PK) methods?

Keyring (Bag of Words) Model

Main idea: Key is a "bag of words" agreed upon by sender and receiver. (Really "set" not "bag" (multiset).)

Each word is a keyword.

- Each word is a keyword.
- Bag is a keyring.

- Each word is a keyword.
- Bag is a keyring.
- Separate keyring for each sender/receiver pair.

- Each word is a keyword.
- Bag is a keyring.
- Separate keyring for each sender/receiver pair.
- Sender and receiver have identical (or nearly identical) keyrings.

- Each word is a keyword.
- Bag is a keyring.
- Separate keyring for each sender/receiver pair.
- Sender and receiver have identical (or nearly identical) keyrings.
- Maybe 10–100 keywords on a keyring.

Alice says privately to Bob:

Let's add "garlic" to our keyring.

Alice says privately to Bob:

- Let's add "garlic" to our keyring.
- Let's delete "mustard" from our keyring.

Alice says privately to Bob:

- Let's add "garlic" to our keyring.
- Let's delete "mustard" from our keyring.
- Let's add all words from your last two tweets.

Alice says privately to Bob:

- Let's add "garlic" to our keyring.
- Let's delete "mustard" from our keyring.
- Let's add all words from your last two tweets.
- Let's add words of a quote:

Alice says privately to Bob:

- Let's add "garlic" to our keyring.
- Let's delete "mustard" from our keyring.
- Let's add all words from your last two tweets.
- Let's add words of a quote:

"It is a miracle that curiosity survives formal education."

(Albert Einstein)

Alice says privately to Bob:

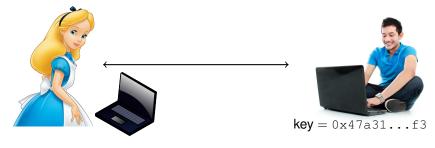
- Let's add "garlic" to our keyring.
- Let's delete "mustard" from our keyring.
- Let's add all words from your last two tweets.
- Let's add words of a quote:

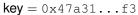
"It is a miracle that curiosity survives formal education."

(Albert Einstein)

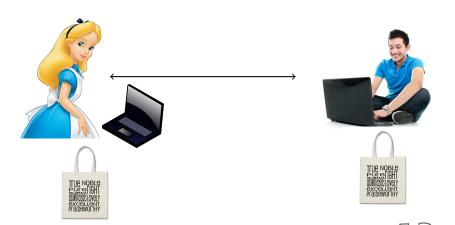
Let's delete all keywords added in 2015.

Scenario

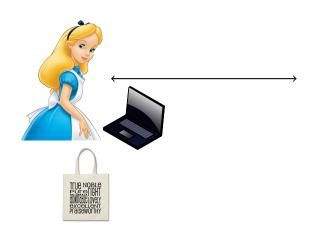




Scenario



Scenario



Keyring Issues

(Resilience) How to make encryption work even if Alice and Bob's keyrings are slightly "out of sync"?

Keyring Issues

- (Resilience) How to make encryption work even if Alice and Bob's keyrings are slightly "out of sync"?
- (Keying) How to use a "bag of words" as a symmetric crypto key?

Keyring Issues

- (Resilience) How to make encryption work even if Alice and Bob's keyrings are slightly "out of sync"?
- (Keying) How to use a "bag of words" as a symmetric crypto key?
- (Security) How to keep adversary from breaking in and then "tracking" keyring evolution?

We want that a ciphertext made using keyring *A* can be decrypted using different keyring *B*, as long as *A* and *B* are "close".

We want that a ciphertext made using keyring *A* can be decrypted using different keyring *B*, as long as *A* and *B* are "close".

Two metrics of interest:

We want that a ciphertext made using keyring *A* can be decrypted using different keyring *B*, as long as *A* and *B* are "close".

Two metrics of interest:

▶ **Set distance**. (Relative) size of set difference. That is, $|A \oplus B|$ or $|A \oplus B|/|A \cup B|$.

We want that a ciphertext made using keyring *A* can be decrypted using different keyring *B*, as long as *A* and *B* are "close".

Two metrics of interest:

- ▶ **Set distance**. (Relative) size of set difference. That is, $|A \oplus B|$ or $|A \oplus B|/|A \cup B|$.
- Hamming distance. (Relative) number of positions in which vectors x and y differ.

We want that a ciphertext made using keyring *A* can be decrypted using different keyring *B*, as long as *A* and *B* are "close".

Two metrics of interest:

- ▶ **Set distance**. (Relative) size of set difference. That is, $|A \oplus B|$ or $|A \oplus B|/|A \cup B|$.
- ► Hamming distance. (Relative) number of positions in which vectors x and y differ.

We describe a nice way of converting from the first to the second.

Biometrics: Use a fingerprint as key

Our problem is not particularly new...

Biometrics: Use a fingerprint as key

Our problem is not particularly new... Similar to the problem of encrypting a key with a biometric; biometric features \sim keywords.

Juels/Wattenberg 1999 "A Fuzzy Commitment Scheme". Introduces "code-offset" construction.

- Juels/Wattenberg 1999 "A Fuzzy Commitment Scheme". Introduces "code-offset" construction.
- Juels/Sudan 2006 "A Fuzzy Vault Scheme"
 Based on clever use of interpolation.

- Juels/Wattenberg 1999 "A Fuzzy Commitment Scheme". Introduces "code-offset" construction.
- Juels/Sudan 2006 "A Fuzzy Vault Scheme"
 Based on clever use of interpolation.
- ► Dodis/Ostrovsky/Reyzin/Smith 2004
 "Fuzzy Extractors: How to Generate Strong
 Keys from Biometrics and Other Noisy Data"
 Relates 'secure sketches" and fuzzy
 extractors. (Also: Dodis/Reyzin/Smith 2007
 "Fuzzy Extractors")

- Juels/Wattenberg 1999 "A Fuzzy Commitment Scheme". Introduces "code-offset" construction.
- Juels/Sudan 2006 "A Fuzzy Vault Scheme"
 Based on clever use of interpolation.
- Dodis/Ostrovsky/Reyzin/Smith 2004
 "Fuzzy Extractors: How to Generate Strong
 Keys from Biometrics and Other Noisy Data"
 Relates 'secure sketches" and fuzzy
 extractors. (Also: Dodis/Reyzin/Smith 2007
 "Fuzzy Extractors")
- Sahai/Waters 2005 "Fuzzy IBE". Fuzzy PK scheme

PinSketch[DORS04]

- Uses BCH ECC with algorithms that work efficiently on sparse vectors.
- Message transmitted has length δ over $GF(2^{\alpha})$, where $2^{\alpha} \geq |\mathcal{U}|$ and \mathcal{U} is universe of keys, and where δ is upper bound on the size of the set difference $A \oplus B$.
- Allows recipient to reconstruct A.

Quantum Key Distribution

 Bennet Brassard 1984
 "Quantum cryptography: Public key distribution and coin tossing"
 Information reconciliation by public discussion over a classical channel.

Resilient Set Vectorization

A **set vectorizer** ϕ takes as input a set A, an integer n, and a nonce N, and produces as output a uniformly chosen (over the choice of nonce) vector from A^n .

A **resilient set vectorizer** is a set vectorizer with the property that for any two sets A and B with $|A \cap B| = p \cdot |A \cup B|$ (for some p, $0 \le p \le 1$), we have

$$d(\phi(A, n, N), \phi(B, n, N)) \sim n - \text{Bin}(n, p)$$
.

That is, if a fraction p of $A \cup B$ are shared, then the fraction of positions where $\phi(A, n, N)$ and $\phi(B, n, N)$ agree follows the binomial distribution with mean np.

Alice and Bob agree on a strategy.

- Alice and Bob agree on a strategy.
- Alice is given an arbitrary keyring A.

- Alice and Bob agree on a strategy.
- ▶ Alice is given an arbitrary keyring A.
- ▶ Bob is given an arbitrary keyring B.

- Alice and Bob agree on a strategy.
- ▶ Alice is given an arbitrary keyring A.
- Bob is given an arbitrary keyring B.
- ▶ They are told sizes of A, B, $A \cap B$, $A \cup B$, U.

- Alice and Bob agree on a strategy.
- ▶ Alice is given an arbitrary keyring A.
- Bob is given an arbitrary keyring B.
- ▶ They are told sizes of A, B, $A \cap B$, $A \cup B$, U.
- ► They are given the same random nonce N.

- Alice and Bob agree on a strategy.
- ▶ Alice is given an arbitrary keyring A.
- Bob is given an arbitrary keyring B.
- ▶ They are told sizes of A, B, $A \cap B$, $A \cup B$, U.
- ► They are given the same random nonce N.
- Alice and Bob separately each pick one element from their keyrings.

- Alice and Bob agree on a strategy.
- ▶ Alice is given an arbitrary keyring A.
- Bob is given an arbitrary keyring B.
- ▶ They are told sizes of A, B, $A \cap B$, $A \cup B$, U.
- They are given the same random nonce N.
- Alice and Bob separately each pick one element from their keyrings.
- What is the maximum probability that they pick the same element, using optimal strategy?

$$|A|=2$$
 $|A\cap B|=1$ $|B|=2$ $|\mathcal{U}|=3$

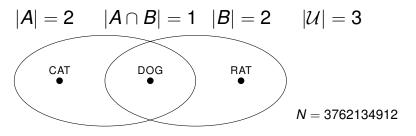


Should Alice pick CAT or DOG?

Bob sees:
$$|A|=2 \qquad |A\cap B|=1 \quad |B|=2 \qquad |\mathcal{U}|=3$$

$$\overset{\text{CAT}}{\bullet} \qquad \overset{\text{DOG}}{\bullet} \qquad \overset{\text{RAT}}{\bullet} \qquad N=3762134912$$

Should Bob pick DOG or RAT?



Should Alice pick cat or DOG?

Should Bob pick DOG or RAT?

$$|A|=2$$
 $|A\cap B|=1$ $|B|=2$ $|\mathcal{U}|=3$

Should Alice pick CAT Or DOG?

Should Bob pick DOG OF RAT?

Agree with prob 1/4? 1/3? 1/2?...

Keyword Matching Game – Random Strategy

 If Alice and Bob make their choices independently at random, then they match with probability

$$|A \cap B|/|A||B|$$
.

Keyword Matching Game – Random Strategy

 If Alice and Bob make their choices independently at random, then they match with probability

$$|A \cap B|/|A||B|$$
.

(Pretty small, especially when A and B are large.)

Brute-force searches for optimal strategies (surprisingly) suggested the following

Theorem

When $|A \cap B| = 1$ and $A \cup B = \mathcal{U}$ the optimum match probability is at least

 $1/\max(|A|, |B|)$.

Brute-force searches for optimal strategies (surprisingly) suggested the following

Theorem

When $|A \cap B| = 1$ and $A \cup B = \mathcal{U}$ the optimum match probability is at least

$$1/\max(|A|, |B|)$$
.

Proof: (at end).

Brute-force searches for optimal strategies (surprisingly) suggested the following

Theorem

When $|A \cap B| = 1$ and $A \cup B = \mathcal{U}$ the optimum match probability is at least

$$1/\max(|A|, |B|)$$
.

Proof: (at end).

Exercise: Find such an optimal strategy for our example that matches with probability 1/2.

Brute-force searches for optimal strategies (surprisingly) suggested the following

Theorem

When $|A \cap B| = 1$ and $A \cup B = \mathcal{U}$ the optimum match probability is at least

$$1/\max(|A|, |B|)$$
.

Proof: (at end).

Exercise: Find such an optimal strategy for our example that matches with probability 1/2.

But $|A \cap B| = 1$ and $A \cup B = \mathcal{U}$ are unrealistic

Jaccard Index of Similarity

► The Jaccard similarity coefficient J(A, B) measures the similarity of two sets A and B:

$$J(A,B) = \frac{|A \cap B|}{|A \cup B|}.$$

Jaccard Index of Similarity

► The Jaccard similarity coefficient J(A, B) measures the similarity of two sets A and B:

$$J(A,B)=\frac{|A\cap B|}{|A\cup B|}.$$

▶ It can be estimated using the **MinHash** method (Broder 1997): Construct *n* random hash functions mapping elements to real values. Compute the fraction *f* of them having the same minimum in *A* as in *B*. Then

$$E(f)=J(A,B).$$

Keyword Matching Game via MinHash

Theorem

Alice and Bob can always win with probability at least $p = J(A, B) = |A \cap B|/|A \cup B|$.

Keyword Matching Game via MinHash

Theorem

Alice and Bob can always win with probability at least $p = J(A, B) = |A \cap B|/|A \cup B|$.

Proof.

- ► Initially, Alice and Bob agree on a random hash function h.
- They each pick their keyword with minimum hash-value.
- They win if one of their shared keywords has the smallest hash value in both sets.

Keyword Matching Game via MinHash

Theorem

Alice and Bob can always win with probability at least $p = J(A, B) = |A \cap B|/|A \cup B|$.

Proof.

- ► Initially, Alice and Bob agree on a random hash function h.
- They each pick their keyword with minimum hash-value.
- They win if one of their shared keywords has the smallest hash value in both sets.

Conjecture: The MinHash strategy is *optimal* for $|A \cap B| > 1$.

Resilient Set Vectorization (RSV)

Alice iterates the MinHash method (with *n* random hash functions), to create a **keyword vector**

$$W = \phi(A, n, N) = (W_1, W_2, \dots, W_n)$$
 of some desired length n .

Resilient Set Vectorization (RSV)

Alice iterates the MinHash method (with *n* random hash functions), to create a **keyword vector**

$$W = \phi(A, n, N) = (W_1, W_2, \dots, W_n)$$

of some desired length n.

Bob (using same hashes) similarly creates a keyword vector W'.

Resilient Set Vectorization (RSV)

Alice iterates the MinHash method (with *n* random hash functions), to create a **keyword vector**

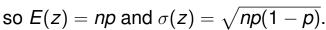
$$W = \phi(A, n, N) = (W_1, W_2, \dots, W_n)$$

of some desired length n.

Bob (using same hashes) similarly creates a keyword vector W'.

Let z denote the number of positions in which W and W' agree, and let p = J(A, B). Then (under ROM)

$$z \sim \text{Bin}(n, p),$$



Security Analysis Setup

Suppose we can arrange things so that Bob *can* always decrypt Alice's ciphertext if

$$z \geq 3n/4$$
.

Security Analysis Setup

Suppose we can arrange things so that Bob can always decrypt Alice's ciphertext if

$$z \geq 3n/4$$
.

Suppose further we can arrange things so that the Adversary can't decrypt Alice's ciphertext if the number z' of positions of W it knows (or guesses) correctly satisfies

$$z' < n/2$$
.

$$p = J(A, B) = 0.90$$
.

Suppose Alice and Bob have

$$p = J(A, B) = 0.90$$
.

Alice encrypts a message to Bob using $\phi(A, n, N)$ as a key, where n = 256.

$$p = J(A, B) = 0.90$$
.

- Alice encrypts a message to Bob using $\phi(A, n, N)$ as a key, where n = 256.
- ▶ Bob's vector $\phi(B, n, N)$ agrees with $\phi(A, n, N)$ in z positions.

$$p = J(A, B) = 0.90$$
.

- Alice encrypts a message to Bob using $\phi(A, n, N)$ as a key, where n = 256.
- ▶ Bob's vector $\phi(B, n, N)$ agrees with $\phi(A, n, N)$ in z positions.
- ▶ If $z \ge 192$, Bob can decrypt the message.

$$p = J(A, B) = 0.90$$
.

- Alice encrypts a message to Bob using $\phi(A, n, N)$ as a key, where n = 256.
- ▶ Bob's vector $\phi(B, n, N)$ agrees with $\phi(A, n, N)$ in z positions.
- ▶ If $z \ge 192$, Bob can decrypt the message.
- Bob fails to decrypt with near-zero probability:

Prob
$$(z < 192) = 1.5 \times 10^{-12}$$
.

$$p' = J(A, Q) = 0.25$$
.

 Suppose Adversary knows (or guesses) Q, a set of 1/4 of Alice's keyring A, so

$$p' = J(A, Q) = 0.25$$
.

 Alice encrypts a message to Bob using φ(A, n, N) as a key; Adversary overhears ciphertext.

$$p' = J(A, Q) = 0.25$$
.

- Alice encrypts a message to Bob using φ(A, n, N) as a key; Adversary overhears ciphertext.
- Adversary's vector $\phi(Q, n, N)$ agrees with Alice's in z' positions.

$$p' = J(A, Q) = 0.25$$
.

- Alice encrypts a message to Bob using φ(A, n, N) as a key; Adversary overhears ciphertext.
- Adversary's vector $\phi(Q, n, N)$ agrees with Alice's in z' positions.
- ▶ If $z' \ge 128$, Adversary can decrypt message.

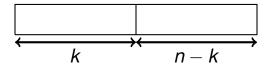
$$p' = J(A, Q) = 0.25$$
.

- Alice encrypts a message to Bob using φ(A, n, N) as a key; Adversary overhears ciphertext.
- Adversary's vector $\phi(Q, n, N)$ agrees with Alice's in z' positions.
- ▶ If $z' \ge 128$, Adversary can decrypt message.
- But Adversary fails almost certainly, since

$$Prob(z' \ge 128) = 7.5 \times 10^{-18}$$
.

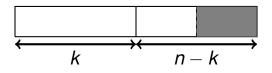
Error Correction

An (n, k) Reed-Solomon code has k information symbols and codewords of length n.



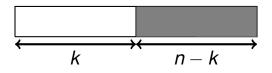
Error Correction

- An (n, k) Reed-Solomon code has k information symbols and codewords of length n.
- Bob can efficiently correct up to (n k)/2 errors and always obtain a unique decoding.



Error Correction

- An (n, k) Reed-Solomon code has k information symbols and codewords of length n.
- Bob can efficiently correct up to (n k)/2 errors and always obtain a unique decoding.
- With **list decoding** Adversary can efficiently correct up to (n k) errors (and obtain a small number of possible decodings).



Μ

1

 $K_1 \cdot \cdot \cdot K_k$ M

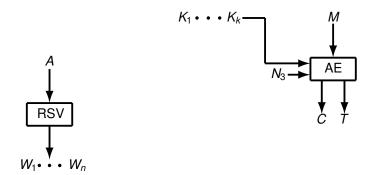
Α

 $A \qquad \qquad \begin{array}{c} K_1 \cdot \cdot \cdot \cdot K_k \\ \\ A \\ \\ \end{array}$

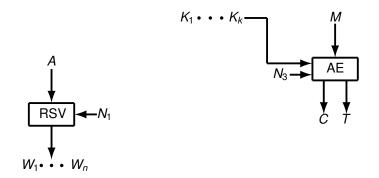
Alice sends

C, and T.

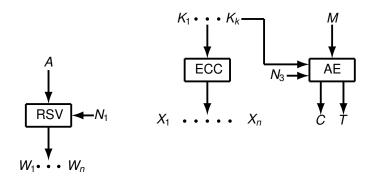
 $A \qquad \qquad \begin{matrix} K_1 \cdot \cdot \cdot \cdot K_k \\ \hline \\ N_3 \\ \hline \end{matrix} \qquad \begin{matrix} M \\ AE \\ \hline \end{matrix}$



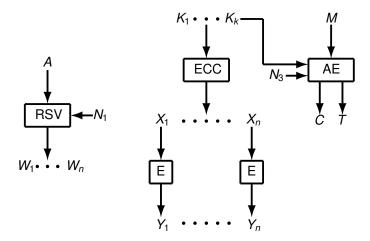
Alice sends (N_3), C, and T.



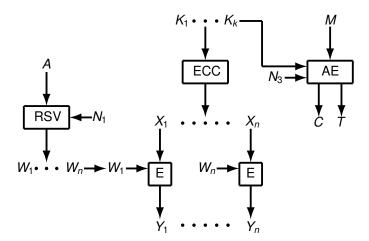
Alice sends (N_1, N_3) , C, and T.



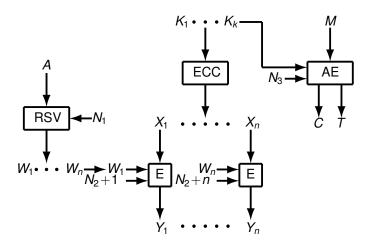
Alice sends $(N_1, N_3), C$, and T.



Alice sends (N_1, N_3) , Y, C, and T.



Alice sends (N_1, N_3) , Y, C, and T.



Alice sends (N_1, N_2, N_3) , Y, C, and T.

▶ Choose random nonces N_1 , N_2 , N_3 .

- ► Choose random nonces N₁, N₂, N₃.
- Choose n and k (e.g. n = 256, k = 128) and byte size (GF(2⁸)).

- ► Choose random nonces N₁, N₂, N₃.
- ► Choose *n* and *k* (e.g. n = 256, k = 128) and byte size $(GF(2^8))$.
- ► Choose random k-byte message key $K_1, ..., K_k$ (aka "vault contents").

- ► Choose random nonces N₁, N₂, N₃.
- Choose n and k (e.g. n = 256, k = 128) and byte size (GF(2⁸)).
- ► Choose random k-byte message key $K_1, ..., K_k$ (aka "vault contents").
- Encrypt message M with key K and nonce N₃ using an authenticated encryption method to obtain ciphertext C and authentication tag T.

► Compute keyword vector $W = \phi(A, n, N_1)$.

- ► Compute keyword vector $W = \phi(A, n, N_1)$.
- Reed-Solomon-encode key to give *n*-byte encoded key X₁, . . . , X_n.

- ► Compute keyword vector $W = \phi(A, n, N_1)$.
- ▶ Reed-Solomon-encode key to give *n*-byte encoded key X₁,..., X_n.
- Use each keyword vector element W_i as key to encrypt each encoded key byte X_i:

$$Y_i = E(W_i, X_i, N_2 + i)$$

use small-domain encryption tweakable encryption method like "swap-or-not" (Hoang-Morris-Rogaway14).

- ► Compute keyword vector $W = \phi(A, n, N_1)$.
- ▶ Reed-Solomon-encode key to give *n*-byte encoded key X₁,..., X_n.
- Use each keyword vector element W_i as key to encrypt each encoded key byte X_i:

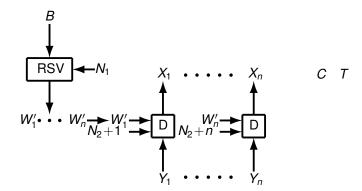
$$Y_i = E(W_i, X_i, N_2 + i)$$

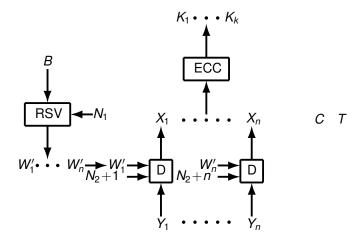
use small-domain encryption tweakable encryption method like "swap-or-not" (Hoang-Morris-Rogaway14).

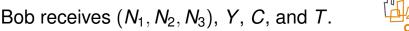
Send (N₁, N₂, N₃), Y, C, T.

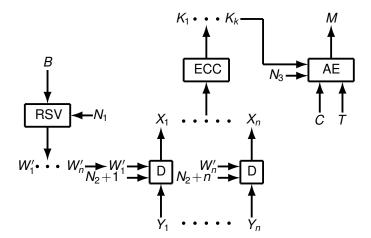
В

C T









Bob receives (N_1, N_2, N_3) , Y, C, and T.

Adversary may try to guess a large subset of A.

- Adversary may try to guess a large subset of A.
- ▶ Difficulty depends on A. Even if $|\mathcal{U}| = 4096$ and |A| = 24 (chosen uniformly), guessing a 12-word subset of A has chance

$$\binom{24}{12}/\binom{4096}{12}\approx 2^{-94}$$

of success.

- Adversary may try to guess a large subset of A.
- ▶ Difficulty depends on A. Even if $|\mathcal{U}| = 4096$ and |A| = 24 (chosen uniformly), guessing a 12-word subset of A has chance

$$\binom{24}{12}/\binom{4096}{12}\approx 2^{-94}$$

of success.

Using keyrings may invite poor choices (just as passwords tend to be poor). "Biometric" keyrings don't have this problem.

- Adversary may try to guess a large subset of A.
- ▶ Difficulty depends on A. Even if $|\mathcal{U}| = 4096$ and |A| = 24 (chosen uniformly), guessing a 12-word subset of A has chance

$$\binom{24}{12} / \binom{4096}{12} \approx 2^{-94}$$

of success.

- Using keyrings may invite poor choices (just as passwords tend to be poor). "Biometric" keyrings don't have this problem.
- Initial keywords may be high-entropy.

Attack 2: Stealing A, then tracking its evolution

Stealing A, then tracking its evolution if updates are small.

Attack 2: Stealing A, then tracking its evolution

- Stealing A, then tracking its evolution if updates are small.
- Make updates large every once in a while!

Attack 2: Stealing A, then tracking its evolution

- Stealing A, then tracking its evolution if updates are small.
- Make updates large every once in a while!
- Reminiscent of problems of refreshing entropy pool in PRNG.
 (Ferguson-Schneier-Kohn'10, Dodis-Shamir-StephensDavidowitz-Wich'14).

Attack 3: Playing Matching Game better

We only conjectured that MinHash strategy was best way to play Keyword Matching Game.

Attack 3: Playing Matching Game better

- We only conjectured that MinHash strategy was best way to play Keyword Matching Game.
- Perhaps Adversary can play this game better than Bob can, even for a fixed strategy by Alice!

Attack 3: Playing Matching Game better

- We only conjectured that MinHash strategy was best way to play Keyword Matching Game.
- Perhaps Adversary can play this game better than Bob can, even for a fixed strategy by Alice!
- ▶ We need to prove that MinHash strategy is optimal (for $|A \cap B| > 1$)!

Attack 4: Chosen ciphertext attack

Given a valid ciphertext, Adversary can use Bob as a pass/fail decryption oracle to do a sensitivity analysis disclosing where he has correct keywords.

Attack 4: Chosen ciphertext attack

- Given a valid ciphertext, Adversary can use Bob as a pass/fail decryption oracle to do a sensitivity analysis disclosing where he has correct keywords.
- Serious! Adversary may compute set of candidate words with small MinHash values in each such position. These are good candidates for being in B.

Attack 4: Chosen ciphertext attack

- Given a valid ciphertext, Adversary can use Bob as a pass/fail decryption oracle to do a sensitivity analysis disclosing where he has correct keywords.
- Serious! Adversary may compute set of candidate words with small MinHash values in each such position. These are good candidates for being in B.
- ► Encrypt *M* with AEAD instead of AE, where AD includes *Y* and nonces. Insecure? (*AD* and *K* are related.) Proof needed.

Keyring scheme is not a "sketch"—Bob can't recover A.

- Keyring scheme is not a "sketch"—Bob can't recover A.
- Keyring scheme isn't restricted to certain error codes (e.g. algebraic codes).

- Keyring scheme is not a "sketch"—Bob can't recover A.
- Keyring scheme isn't restricted to certain error codes (e.g. algebraic codes).
- We don't require bounded $|\mathcal{U}|$.

- Keyring scheme is not a "sketch"—Bob can't recover A.
- Keyring scheme isn't restricted to certain error codes (e.g. algebraic codes).
- ▶ We don't require bounded |U|.
- PinSketch messages have size

$$|A \oplus B| \log |\mathcal{U}|$$
.

- Keyring scheme is not a "sketch"—Bob can't recover A.
- Keyring scheme isn't restricted to certain error codes (e.g. algebraic codes).
- We don't require bounded $|\mathcal{U}|$.
- PinSketch messages have size

$$|A \oplus B| \log |\mathcal{U}|$$
.

▶ We send n = 256 bytes plus nonces.

- Keyring scheme is not a "sketch"—Bob can't recover A.
- Keyring scheme isn't restricted to certain error codes (e.g. algebraic codes).
- We don't require bounded $|\mathcal{U}|$.
- PinSketch messages have size

$$|A \oplus B| \log |\mathcal{U}|$$
.

- ▶ We send n = 256 bytes plus nonces.
- ▶ Bob can decode whp if $p k/n \ge c\sqrt{np(1-p)}$, which holds for **constant** n if $p > (1 + \epsilon)k/n$.

New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.
- Security is controllable via choices of n and keyring size.

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.
- Security is controllable via choices of n and keyring size.
- Keyword Matching Game of possible independent interest.

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.
- Security is controllable via choices of n and keyring size.
- Keyword Matching Game of possible independent interest.
- Open problems include

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.
- Security is controllable via choices of n and keyring size.
- Keyword Matching Game of possible independent interest.
- Open problems include
 - Determining optimal strategy in Keyword Matching Game. (Is it MinHash?)

- New scheme facilitates updates of keys; these updates can now be done incrementally as well as all at once.
- New scheme has reduced message size.
- Security is controllable via choices of n and keyring size.
- Keyword Matching Game of possible independent interest.
- Open problems include
 - Determining optimal strategy in Keyword Matching Game. (Is it MinHash?)
 - Analyzing security of AEAD variant against CCA.

The End

► Create bipartite graph whose vertices are all |A|-subsets (resp. all |B|-subsets) of \mathcal{U} with an (X, Y) edge iff $|X \cap Y| = 1$. The |A|-subsets have degree |A|; the |B|-subsets have degree |B|.

- ► Create bipartite graph whose vertices are all |A|-subsets (resp. all |B|-subsets) of \mathcal{U} with an (X, Y) edge iff $|X \cap Y| = 1$. The |A|-subsets have degree |A|; the |B|-subsets have degree |B|.
- By Hall's Thm you can find a matching that covers all |A|-subsets.

- ▶ Create bipartite graph whose vertices are all |A|-subsets (resp. all |B|-subsets) of \mathcal{U} with an (X, Y) edge iff $|X \cap Y| = 1$. The |A|-subsets have degree |A|; the |B|-subsets have degree |B|.
- By Hall's Thm you can find a matching that covers all |A|-subsets.
- Alice and Bob each choose keyword shared with their matched subset (if any).

- ► Create bipartite graph whose vertices are all |A|-subsets (resp. all |B|-subsets) of \mathcal{U} with an (X, Y) edge iff $|X \cap Y| = 1$. The |A|-subsets have degree |A|; the |B|-subsets have degree |B|.
- By Hall's Thm you can find a matching that covers all |A|-subsets.
- Alice and Bob each choose keyword shared with their matched subset (if any).
- ► They pick the same keyword with probability $1/|A| = 1/\max(|A|, |B|)$.

- ► Create bipartite graph whose vertices are all |A|-subsets (resp. all |B|-subsets) of \mathcal{U} with an (X, Y) edge iff $|X \cap Y| = 1$. The |A|-subsets have degree |A|; the |B|-subsets
- ▶ By Hall's Thm you can find a matching that covers all |A|-subsets.

have degree |B|.

- Alice and Bob each choose keyword shared with their matched subset (if any).
- They pick the same keyword with probability $1/|A| = 1/\max(|A|, |B|)$.
- (This only works for $|A \cap B| = 1$. \odot)