Generic security of the Keyed Sponge

Joan Daemen^{1,2}

based on joint work with Guido Bertoni¹, Michaël Peeters¹, Gilles Van Assche¹, Elena Andreeva³ and Bart Mennink³

 1 STMicroelectronics 2 Radboud University 3 COSIC KULeuven

ArcticCrypt Longyearbyen July 19, 2016

Outline

- Sponge
- 2 Keyed sponge
- 3 Beyond birthday-bound security
- 4 Keyed sponge, refactored

Outline

- 1 Sponge
- 2 Keyed sponge
- 3 Beyond birthday-bound security
- 4 Keyed sponge, refactored

RADIOGATÚN [Keccak team, NIST 2nd hash workshop 2006]

- XOF: eXtendable Output Function
- Problem: expressing security claim
- Search for random oracle but then with inner collisions

(Early) Sponge at Dagstuhl, January 2007

Screenshot:

- Description:
 - Internal state $S = (S_A, S_G) \in \mathbb{Z}_2 \times \mathbb{Z}_2^c$ with initial value S = (0,0)
 - Absorbing: for each bit p of the input:

$$S = f(S_A + p, S_G)$$

Resting:

$$S = f(S_A + 1, S_G)$$

• Squeezing: for each bit z of the output:

$$z = S_{A}$$

$$S = f(S_{\Delta} + 0, S_{G})$$

We call c: the sponge capacity

Generic security of Sponge [KT, Ecrypt hash, September 2007]

- Random sponges:
 - T-sponge: *f* is random transformation
 - P-sponge: *f* is random permutation
- Theorem: if no inner collisions, output is uniformly random
 - inner collision: different inputs leading to same inner state
 - Probability of inner collision:
 - $2^{-c-1}M^2$ with M: # calls to f

Promoting sponge from reference to usage (2007-2008)

- RADIOGATÚN cryptanalysis (1st & 3rd party): not promising
- NIST SHA-3 deadline approaching ...U-turn
- Sponge with *strong* permutation *f*. Keccak [KT, SHA-3, 2008]

Distinguishing random sponge from random oracle

- Distinguishing advantage: $2^{-c-1}M^2$
- Problem: in real world, adversary has access to f

Differentiating random sponge from random oracle

- Indifferentiability framework [Maurer, Renner & Holenstein, 2004]
- Applied to hashing [Coron, Dodis, Malinaud & Puniya, 2005]
- Random oracle augmented with simulator for sake of proof
- Differentiating advantage: 2^{-c-1}M² [KT, Eurocrypt 2008]

Outline

- 1 Sponge
- 2 Keyed sponge
- 3 Beyond birthday-bound security
- 4 Keyed sponge, refactored

Message authentication codes

Stream encryption

- Long output stream per IV: similar to OFB mode
- Short output stream per IV: similar to counter mode

Authenticated encryption: spongeWrap [KT, SAC 2011]

- Adopted by several CAESAR candidates
- But this is no longer sponge

The duplex construction [KT, SAC 2011]

Generic security equivalent to that of sponge

Keyed sponge: distinguishing setting

- Straightforward bound: $2^{-c-1}M^2 + 2^{-k}M$
- Security strength s: expected complexity of successful attack
 - strength *s* means attack complexity 2^{*s*}
 - bounds can be converted to security strength statements
- Here: $s \ge \min(c/2, k)$
 - e.g., s = 128 requires c = 256 and k = 128
 - c/2: birthday bound

Outline

- 1 Sponge
- 2 Keyed sponge
- 3 Beyond birthday-bound security
- 4 Keyed sponge, refactored

More fine-grained attack complexity

- Splitting attack complexity:
 - queries to construction: data complexity M
 - queries to f or f^{-1} : computational complexity N
- Our ambition around 2010: $2^{-c-1}M^2 + 2^{-c}NM + 2^{-k}N$
- If we limit data complexity $M \le 2^a \ll 2^{c/2}$:
 - $s \ge \min(c a, k)$
 - e.g., s = 128 and a = 64 require c = 192 and k = 128

• success probability per guess: 2^{-c}

- $\mu \leq M$ instances with same partial *r*-bit input
- success probability per guess: $\mu 2^{-c}$

- $\mu \leq M$ instances with same partial *r*-bit input
- success probability per guess: $\mu 2^{-c}$

- $\mu \leq M$ instances with same partial *r*-bit input
- success probability per guess: $\mu 2^{-c}$

An initial attempt [KT, SKEW 2011]

- **bound:** $2^{-c-1}M^2 + 2^{-c+1}NM + 2^{-k}N$
- Problems and limitations
 - bound did not cover multi-target (key) attacks
 - proof did not convince reviewers
 - new variant (a.o. in CAESAR): inner-keyed sponge:

[Andreeva, Daemen, Mennink, Van Assche, FSE 2015]

- Inner/outer-keyed, multi-target (n), multiplicity μ
- Modular proof using Patarin's H-coefficient technique
- Bound: $2^{-c-1}M^2 + 2^{-c+1}\mu N + 2^{-k}nN + \dots$

Full-state absorbing! [Mennink, Reyhanitabar and Vizár, Asiacrypt 2015]

- Absorbing on full permutation width does not degrade bounds
- We decided to use that insight in Keyak v2
- But proven bounds had some limitations and problems:
 - term $2^{-k}\mu N$ rather than $2^{-c}\mu N$
 - no multi-key security
 - \blacksquare multiplicity μ only known a posteriori

Full-state absorbing! [Mennink, Reyhanitabar and Vizár, Asiacrypt 2015]

- Absorbing on full permutation width does not degrade bounds
- We decided to use that insight in KEYAK v2
- But proven bounds had some limitations and problems:
 - term $2^{-k}\mu N$ rather than $2^{-c}\mu N$
 - no multi-key security
 - \blacksquare multiplicity μ only known a posteriori

Outline

- 1 Sponge
- 2 Keyed sponge
- 3 Beyond birthday-bound security
- 4 Keyed sponge, refactored

The new core: (full-state) keyed duplex

- Full-state absorbing, no padding: $|\sigma| = b$
- Initial state: concatenation of key k and IV
- Multi-key: k selected from an array **K** with index δ
- Re-phased: f, Z, σ instead of σ , f, Z
- lacksquare pprox all keyed sponge functions are modes of this

Generic security of keyed duplex: the setup

- Ideal function: Ideal eXtendable Input Function (IXIF)
 - lacktriangleright \mathcal{RO} -based object with duplex interface
 - Independent outputs *Z* for different paths
- Further refine adversary's capability
 - **L**: # queries to keyed duplex/ \mathcal{RO} with repeated path
 - $q_{IV}: max_{IV} \# init queries with different keys$

Generic security of keyed duplex: the bound

$$2^{-c-1}L^2 + 2^{-c}(L+2\nu)N + 2^{-k}q_{IV}N + \dots$$

with ν : chosen such that probability of ν -wise multi-collision in set of M r-bit values is negligible

Application: counter-like stream cipher

- Only init calls, each taking Z as keystream block
- IV is nonce, so L = 0
- Assume $M \ll 2^{r/2}$: $\nu = 1$

Bound:

$$2^{-c}(2\nu)N + 2^{-k}q_{IV}N + \dots$$

Strength:

$$s \ge \min(c-1, k-\log_2(q_{\text{IV}}))$$

Application: lightweight MAC

- lacksquare Message padded and fed via IV and σ blocks
- *t*-bit tag, squeezed in chunks of *r* bits: c = b r
- adversary chooses IV so $L \approx M = 2^a$
- $lack q_{\rm IV}$ is total number of keys n

Bound:

$$2^{-c-1}M^2 + 2^{-c+1}MN + 2^{-k}nN + \dots$$

Strength:

$$s \ge \min(b-a-r-1, k-\log_2(n))$$

Imposes a minimum width of the permutation:

$$b > s + a + r$$

Application: Motorist AE session mode

Used in KEYAK v2 [KT & Ronny Van Keer, 2015]

- Plaintext absorbed in outer part, AD in inner part also
- Used in Keyak with c = 256 and b = 1600 or b = 800
- Rate 544 or 1344 so we can take $\nu = 1$
- bounds:
 - nonce-respecting: $2^{-c+1}N + 2^{-k}q_{IV}N + \dots$
 - nonce-violating: $2^{-c}MN + 2^{-k}q_{IV}N + \dots$

Conclusions

- Quite some evolution in keyed sponge
- New results (in submission)
 - appropriate keyed-sponge primitive: (full-state) keyed duplex
 - flexible bound covering many use cases
 - makes life easier for sponge mode designer

Thanks for your attention!